High-throughput sequencing for confirmation of suspected 2019-nCoV infection identified by fluorescence quantitative polymerase chain reaction

Wen-Da Guan1, Li-Ping Chen2, Feng Ye1, Dan Ye1, Shi-Guan Wu1, Hong-Xia Zhou1, Jia-Yang He1, Chun-Guang Yang1, Zhi-Qi Zeng1, Yu-Tao Wang1, Run-Feng Li1, Qiu-Ling Du1, Xiao-Li Liang1, Qin-Hai Ma1, Zi-Feng Yang1,4,5

1Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; 2State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 510006, China; 3Department of Infection Control, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; 4State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, China; 5KingMed Virology Diagnostic and Translational Center, Guangzhou KingMed Center for Clinical Laboratory Co., Ltd., Guangzhou, Guangdong 510330, China.

To the Editor: Identifying the pathogen from clinical samples is crucial for the diagnosis of a newly emergent infectious disease, such as 2019 novel coronavirus (2019-nCoV), which has posed great threats to global public health.[1] In some cases, despite the positive epidemiological, clinical, and radiographic evidence, coronavirus disease 2019 (COVID-19) diagnosis can still be restricted by inconclusive polymerase chain reaction (PCR) results.[2] For samples of suspicious patients, where the fluorescence quantitative PCR (FQ-PCR) results in a few respiratory tract specimens were inconclusive, high-throughput sequencing (HTS) can be an effective confirmation method. Here, we report our experience of applying HTS to confirm a suspected 2019-nCoV infection.

Three upper respiratory tract specimens including throat or nasal swabs were collected from a 65-year-old pneumonia patient with suspected history of contact with COVID-19 patients in Guangzhou on January 22 and 23, 2019. Patient consent was not applicable for this study as the samples were obtained as part of a routine diagnostic procedure. All the clinical specimens were handled at the State Key Laboratory of Respiratory Disease, Guangzhou, China. The initial 2019-nCoV screening results of the three samples were 34.44/31.58/35.50 [#1 throat swab sample], >40/36.37/38.45 [#2 nasal swab sample], and 33.40/34.36/33.10 [#3 throat swab sample]. The test results of the two kits were inconsistent; therefore, to make a definite diagnosis, we performed meta-transcriptomic sequencing using the same throat swab sample (#1 throat swab sample) from the patient. A meta-transcriptomic library was constructed for single-end (75 base pairs) sequencing on the Illumina NextSeq 550Dx (Illumina, San Diego, CA, USA). The sequencing data were analyzed with the rapid pathogen detection (RPD-seq) system of the Sagene Company in Guangzhou, China, as previously reported.[3] In total, we obtained ten unique sequence reads that completely mapped onto the 2019-nCoV genome (GenBank accession No. MN908947.3). We considered this sample to be weakly positive rather than contaminated, based on the results that the ten reads are evenly distributed throughout the entire gene sequence of the virus. It is worth noting that these regions of ORF1ab, E and N genes were used as the standard PCR targets [Figure 1].

According to the national diagnosis and treatment plan released by the National Health Commission of the People’s Republic of China, positive viral RNA FQ-PCR or virus gene sequencing results were the diagnostic...
criteria of COVID-19.\[4\] However, the different performance of FQ-PCR kits may lead to inconsistent results. Here we reported a case with inconsistent FQ-PCR results, for which the HTS was used to make a further diagnosis of the 2019-nCoV infection. Although HTS may be too costly and labor intensive for routine diagnosis, we believe that it can be used for further diagnosis of patients with COVID-19 with unclear FQ-PCR results under the condition of strict operation and quality control.

Acknowledgements

The authors are greatly indebted to Prof. Sooksan Wong, for her valuable suggestions on writing of the manuscript.

Funding

This work was supported by grants from the National Key Research and Development Program of China (Nos. 2018YFC1200100 and 2018YFC1311900), science research project of the Guangdong Province (No. 2019B030316028), and Guangzhou Medical University High-level University Clinical Research and Cultivation Program (Nos. [2017]159 and 160).

Conflicts of interest

None.

References

How to cite this article: Guan WD, Chen LP, Ye F, Ye D, Wu SG, Zhou HX, He JY, Yang CG, Zeng ZQ, Wang YT, Li RF, Du QL, Liang XL, Ma QH, Yang ZF. High-throughput sequencing for confirmation of suspected 2019-nCoV infection identified by fluorescence quantitative polymerase chain reaction. Chin Med J 2020;133:1385–1386. doi: 10.1097/ CM9.0000000000000792